

JV-003-001541

Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October - 2019

Statistics: S-501

(Computational Techniques & MATLAB)
(Old Course)

Faculty Code: 003 Subject Code: 001541

		Subject Code . 001541				
Time	: 2:	30 Hours]	[Total	Marks	: 70	
Instr	ucti	ons: (1) Q. 1 carry 20 marks. (2) Q. 2 and Q. 3 carry 25 ma (3) Student can use their own so			lator.	
1 I	Filling the blanks and short questions. (Each 1 mark)				20	
((1)	Interpolation and extrapolation approache	es are _	·	,	
(, ,	For interpolation or extrapolation, the should have relationship.	two va	ariables	}	
(The independent variate values in the intermed as	erpolat	tion are	!	
(. ,	In diagonal difference table, the of the series is taken as origin.	_ ar	gument	!	
((5)	The finite differences $\left(\Delta_{y_2}^2 - \Delta_{y_1}^2\right)$ is cal	ılled _			
		order finite difference.				
(,	Newton's formula for advancing difference of each column of table.				
((7)	The origin x_0 in difference table in the Ne	ewton's	s-Gauss	,	
		backward formula is the value given value of x .	ae of x	to the	!	
(` '	The relation between u of Striling form Bessel's formula is	ıula aı	$\operatorname{ad} v$ of		
(, ,	Lagrange's formula does not require the of table.	e const	ruction	-	
(Each term of a Lagrange's formula arguments is a polynomial of degree		_	,	
JV-00	3-00	1541] 1		[Co	ntd	

- (11) If the interpolating values lies near the beginning or the end of the central interval, _____ formula yields better results.
- (12) Better formula for interpolating a value which lies in the middle of the central interval is _____ formula.
- (13) In Simpson's $\frac{3}{8}$ rule is applicable when the number of intervals n must be a _____.
- (14) For Bessel's and Striling's formula, x_0 must be chosen in such a way that u and v lie in the interval _____.
- (15) In Weddle's rule is applicable when the number of intervals n must be a ______.
- (16) In Trapezoidal rule, f(x) is a _____ of x.
- (17) If $x = [1 \ 2 \ 3; \ 4 \ 5 \ 6]$ then using MATLAB function mean(x, 2) write is correct output?
- (18) If $x = [3 \ 4 \ 5; \ 11 \ 34 \ 43]$ then using MATLAB function median(x, 1) write is correct output?
- (19) If $x = [0 \ 1 \ 2; \ 3 \ 4 \ 5]$ then using MATLAB function cumsum(x, 2) write is correct output?
- (20) If $x = [3 \ 7 \ 5; \ 0 \ 4 \ 2]$ then using MATLAB function $sort(x, \ 1)$ write is correct output ?
- 2 (a) Write the answer any three: (Each 2 marks)
 - (1) Usual notation prove that $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$
 - (2) Prove that $f(x) = \frac{\Delta^n f(x)}{h^n n!}$.
 - (3) Obtain Newton's formula for obtaining inverse.
 - (4) Explain MATLAB function binopdf.
 - (5) Explain MATLAB function std.
 - (6) Evaluate $\sqrt{51}$ using Newton's formula correct upto seven decimal.

6

- (b) Write the answer any **three**: (Each 3 marks)
- 9
- (1) Usual notation prove that $\sqrt{1+\mu^2\delta^2} = 1 + \frac{\delta^2}{2}$.
- (2) Obtain Gregory-Newton's Forward Interpolation formula.
- (3) Explain Taylor's series method.
- (4) Explain MATLAB function prod and cumprod.
- (5) Apply Euler's Maclurin sum formula to find the sum $1^3 + 2^3 + 3^3 + \dots + n^3$.
- (6) Evaluate $\int_0^{10} \frac{1}{1+x^2} dx$ by using Trapezoidal rule.
- (c) Write the answer any two: (Each 5 marks) 10
 - (1) Obtain Bessel's formula for central difference interpolation.
 - (2) Obtain Gauss backward interpolation formula.
 - (3) Obtain Simpson's $\frac{3}{8}$ rule for numerical integration.
 - (4) Explain if Else-End structure of MATLAB with example.
 - (5) Use Taylor's series method to solve $\frac{dy}{dx} = xy + y^2$ with y(0) = 1 at x = 0.1, 0.2, 0.3.
- 3 (a) Write the answer any three: (Each 2 marks) 6
 - (1) Define central and mean operator.
 - (2) If $y = \frac{1}{x}$ then find f(a, b, c, d) and prepare the divided difference table.
 - (3) Usual notation prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$.
 - (4) Explain MATLAB function poisspdf.
 - (5) Explain MATLAB function diff.
 - (6) Evaluate $\frac{1}{\sqrt{28}}$ by using Newton's formula. Correct upto six decimal.

(b) Write the answer any three: (Each 3 marks)

(1) Usual notation prove that
$$\Delta = \frac{1}{2} \delta^2 + \delta \sqrt{1 + \frac{\delta^2}{4}}$$
.

- (2) Obtain Gregory-Newton's Backward Interpolation formula.
- (3) Obtain Simpson's $\frac{1}{3}$ rule for numerical integration.
- (4) Explain False position method.
- (5) Explain MATLAB function sum and cumsum.
- (6) Apply Euler's Maclurin sum formula to find the sums $\frac{1}{11^3} + \frac{1}{12^3} + \dots + \frac{1}{50^3}$ correct to 5 significant figures.
- (c) Write the answer any two: (Each 5 marks) 10
 - (1) Obtain Stirling formula for central difference interpolation.
 - (2) Obtain Gauss forward interpolation formula.
 - (3) Explain For-Loop and While-Loop structure of MATLAB with example.
 - (4) Explain number display format of MATLAB.
 - (5) Given the differential equation $\frac{dy}{dx} = 3x + y^2$, with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.1 correct to three decimal places.

9